REVIEW OF FAA LCCA METHODOLOGY

Dan G. Zollinger, P.E., PhD., FACI

Professor

Texas A&M Transportation Institute

Review Team: Pavements

Dr. Dan Zollinger

- Professor, TAMU
- Rigid Pavement Design and
- Performance
- 33 years experience

Dr. Dallas Little

- E. B. Snead Endowed Chair
- and Regent Fellow, TAMU
- Flexible Pavement Design
- 43 years experience

Review Team: Economics

Dr. William F. McFarland

- Consultant
- Mathematical Economics and Quantitative Analysis
- 24 yrs head of Economics Research Program at TTI

Dr. Dock Burke

- Senior Research Scientist and
- Regents Fellow (Ret.)
- Economic and Financial Policy
- 45 years experience

Scope of Work

• Review:

- Key elements of LCCA
- PAVEAIR/AirCost report and program
- Compare to other LCCA programs

Discuss and Elaborate:

- Key issues,
- Differences, and
- Problems/deficiencies as it would pertain to Airfield LCCA

Prepare Report of Findings:

Respond to review comments

Write proposals:

- For further development and the
- organization of a user's group to provide input

What is Life Cycle Cost Analysis (LCCA)?

- Type of costeffectiveness
- Method of calculating Net Present Value
- Method of putting costs occurring at different times on a common, comparable basis

Airfield Pavement LCCA Literature of Interest

- 1981 LCCA step-by-step procedure outlined in FAA Report DOT/FAA/RD-81/78 subtitled "Engineering Manual" (Epps & Wootan)
- 1995 FAA LCCA Guidance in Appendix, "Economic Analysis," FAA AC 150/5320-6D (Based on 1981 FAA "Engineering Manual")
- 2009 FAA AC 150/5320-6E (Based on 1981 FAA "Engineering Manual") LCCA spreadsheets based on FAA Guidance in Appendix 1
- 2011 AirCost Program & Report developed on AAPTP Project 06-06 by ARA

1981 FAA "Engineering Manual"

- Step-by-step procedures for:
 - Selecting alternatives,
 - Using Net Present Value and
 - Equivalent Uniform Annual Cost formulas
- Calculation tables similar to modern spreadsheets
- Uses real discount rate
- Uses constant unit costs based on average bid items
- Salvage value calculated as a function of remaining service life
- Uses 20 year analysis period in example problems

Appendix 1, Economic Analysis," in AC 5320/150-6D (1995) and -6E (2009)

- Sound guidance for LCCA; basic procedures similar as in 1981
- Step-by-step procedure
- Short but fairly detailed LCCA approach
- Spreadsheet-like calculation tables
- Real discount rate: 4 percent
- Design life and analysis period of 20 years

2004 – FHWA'S RealCost LCCA COMPUTER PROGRAM

- FHWA DP 115
 - Deterministic and probabilistic analysis
 - Excess user costs
 - Has Graphical User Interface (GUI)
- User defines M&R alternatives and service lives
 - Based on historical data
- Several states use RealCost
 - A few states use probabilistic analysis but most do not
- AirCost carries many similarities

KEY ELEMENTS OF LCCA

- Net Present Value (NPV) formula
- Analysis Period
- Discount Rate
- Initial and Future Pavement Costs
- M&R Schedule and Service Lives
- Salvage Value
- Excess User Costs

STEPS IN LCCA PROCEDURE, APPENDIX 1

- 1. Identify and record key project data.
- 2. Determine condition of existing pavement.
- 3. Identify feasible alternatives.
- 4. Determine 1st Costs
- 5. Calculate LCC for each alternative.
- 6. Summarize length of construction time, and chances for success.
- 7. Evaluate the most promising alternatives based on:
 - life-cycle costs,
 - length of construction time,
 - Operational constraints, etc.

Step 2: Determine condition of existing

pavement.

Step 3: Identify feasible alternatives.

- Design life (length of the analysis period).
- Existing pavement condition (structure and functional).
- Air-side operations.
- Climate and drainage condition.
- Constructability (construction time and cost including life-cycle and user costs).
- Expected performance life (life extension).

Feasible Treatment Selection Process

Functional Considerations

JPCP Structural Related Conditions

Short-Term Design: < 5-year Design Life

JPCP Structural Related Conditions

Short-Term Design: < 5-year Design Life

Step 7: Evaluate the most promising

alternatives

Acceptable Alternatives:

- Existing structural and functional condition
- Remaining Life
- Life extension

Suitable Alternatives:

- Overall pavement condition improvement (combination of functional and structural)
- Time of construction
- Life extension
- First cost

Strategy Selection Criteria

Strategy Type	Decision Attribute	Weighted Attribute Component	Suggested Decision Criteria Limits (% of scaled value)
To Conduct Repair (CPR) (Engineering driven solution)	Structural Condition (SC)	Distress Type Distress Level Remaining Life (RL)	If SC Rating < 50% If RL Rating < 50%
	Functional Condition (FC)	Ride Profile Skid Resistance Tire Noise	If FC Rating < 50 %
	MRD Condition (DC)	ASR Steel Corrosion	Provided in table 4.4

Strategy Selection Criteria

Strategy Type	Decision Attribute	Weighted Attribute Component	Suggested Decision Criteria Limits (% of scaled value)
To Use Overlay	Suitability for Overlay	Life Extension (LE)	LE Rating > 50% (Jointed) LE Rating > 70% (CRC) LE Rating > 80% (HMAC)
To Reconstruct	Suitability for Reconstruction	Lane Capacity (LC) Remaining Life (RL) Life Extension (LE)	LC Rating < 50% RL Rating < 50% LE Rating < 25%

Distress Models

Slab Cracking Model

$$\ln \% C = -\left(\frac{D}{\alpha}\right)^{\beta}$$

Where,

%C = percent of Cracking

D = relative accumulated damage

 α , β = calibration coefficients based on local performance

Deterministic/Probabilistic

Preferred Alternatives

Activities:

- •Select *Feasible* Treatments
- Identify <u>Acceptable</u> Treatment Combinations
 - Structural and Functional Pavement Condition
- Determine Traffic Impact and Time of Construction
- Estimate First Cost

Output:

- Selection of <u>Suitable</u> Treatment Combinations
 - Overall Pavement Condition
 - Time of Construction
 - Life Extension
 - First Cost

The **Preferred Alternative** Combinations are developed from the **Suitable Treatment** Combinations

• LCCA/LCA

PAVEAIR Integration

Summary

- Expand use and utility of FAARFIELD
- Improved and expanded use of performance modeling and calibration
 - Include climatic effects
 - Include variance
- Development of a decision making process (DMP) and criteria
 - Include variance
- Systematize the Alternative Development Process
- Set up LCCA (or AirCost) users group
 - Evaluate recommendations for improving AirCost
 - Develop plans for improving each sub-model (key elements)
 of AirCost
- Develop improved databases for pavement and user
 - For bid-price cost and cost-based estimating
 - For user unit costs (e.g., value of passenger time)